Dose-modifying factor for captopril for mitigation of radiation injury to normal lung
نویسندگان
چکیده
Our goal is to develop countermeasures for pulmonary injury following unpredictable events such as radiological terrorism or nuclear accidents. We have previously demonstrated that captopril, an angiotensin converting enzyme (ACE) inhibitor, is more effective than losartan, an angiotensin type-1 receptor blocker, in mitigating radiation-pneumopathy in a relevant rodent model. In the current study we determined the dose modifying factors (DMFs) of captopril for mitigation of parameters of radiation pneumonitis. We used a whole animal model, irradiating 9-10-week-old female rats derived from a Wistar strain (WAG/RijCmcr) with a single dose of irradiation to the thorax of 11, 12, 13, 14 or 15 Gy. Our study develops methodology to measure DMFs for morbidity (survival) as well as physiological endpoints such as lung function, taking into account attrition due to lethal radiation-induced pneumonitis. Captopril delivered in drinking water (140-180 mg/m(2)/day, comparable with that given clinically) and started one week after irradiation has a DMF of 1.07-1.17 for morbidity up to 80 days (survival) and 1.21-1.35 for tachypnea at 42 days (at the peak of pneumonitis) after a single dose of ionizing radiation (X-rays). These encouraging results advance our goals, since DMF measurements are essential for drug labeling and comparison with other mitigators.
منابع مشابه
Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril.
BACKGROUND AND OBJECTIVE A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2 months post-exposure. In this study, we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inh...
متن کاملInvestigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy
Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose. In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...
متن کاملPredictive values of TNF-α, IL-6, IL-10 for radiation pneumonitis
Background: To investigate the expression of TNF-α, IL-6, IL-10 in the plasma of patients with lung cancer who received radiation therapy (RT), and to analyze the correlation between these cytokines and radiation pneumonitis (RP). Materials and Methods: Patients with lung cancer who received 3D-CRT in our hospital were prospectively evaluated. Circulating cytokine levels were measured wit...
متن کاملAnti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays
Background: Radiation‐induced acute lung damages are refractory side effects in lung cancer radiotherapy (RT). Prospective study investigates the possible role of piperine (Pip) as anti-inflammatory agent against γ-rays-induced lung tissue lesions in an applicable rat model. Materials and Methods: Fifty-six Sprague-Dawley rats were divided into four groups: Control, rats were administered...
متن کاملRespiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.
Introduction: The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer. Materials and Methods: Two CT scan was performred for each pati...
متن کامل